Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1251, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341437

RESUMEN

Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a 'slow-fast' axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that 'slow' and 'fast' strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.


Asunto(s)
Biodiversidad , Ecosistema , Biomasa , Agricultura , Suelo
2.
Proc Biol Sci ; 291(2014): 20232383, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38196355

RESUMEN

Natural pest and weed regulation are essential for agricultural production, but the spatial distribution of natural enemies within crop fields and its drivers are mostly unknown. Using 28 datasets comprising 1204 study sites across eight Western and Central European countries, we performed a quantitative synthesis of carabid richness, activity densities and functional traits in relation to field edges (i.e. distance functions). We show that distance functions of carabids strongly depend on carabid functional traits, crop type and, to a lesser extent, adjacent non-crop habitats. Richness of both carnivores and granivores, and activity densities of small and granivorous species decreased towards field interiors, whereas the densities of large species increased. We found strong distance decays in maize and vegetables whereas richness and densities remained more stable in cereals, oilseed crops and legumes. We conclude that carabid assemblages in agricultural landscapes are driven by the complex interplay of crop types, adjacent non-crop habitats and further landscape parameters with great potential for targeted agroecological management. In particular, our synthesis indicates that a higher edge-interior ratio can counter the distance decay of carabid richness per field and thus likely benefits natural pest and weed regulation, hence contributing to agricultural sustainability.


Asunto(s)
Agricultura , Fabaceae , Productos Agrícolas , Europa (Continente) , Fenotipo
3.
Ecology ; 104(1): e3848, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36366785

RESUMEN

Despite sometimes strong codependencies of insect herbivores and plants, the responses of individual taxa to accelerating climate change are typically studied in isolation. For this reason, biotic interactions that potentially limit species in tracking their preferred climatic niches are ignored. Here, we chose butterflies as a prominent representative of herbivorous insects to investigate the impacts of temperature changes and their larval host plant distributions along a 1.4-km elevational gradient in the German Alps. Following a sampling protocol of 2009, we revisited 33 grassland plots in 2019 over an entire growing season. We quantified changes in butterfly abundance and richness by repeated transect walks on each plot and disentangled the direct and indirect effects of locally assessed temperature, site management, and larval and adult food resource availability on these patterns. Additionally, we determined elevational range shifts of butterflies and host plants at both the community and species level. Comparing the two sampled years (2009 and 2019), we found a severe decline in butterfly abundance and a clear upward shift of butterflies along the elevational gradient. We detected shifts in the peak of species richness, community composition, and at the species level, whereby mountainous species shifted particularly strongly. In contrast, host plants showed barely any change, neither in connection with species richness nor individual species shifts. Further, temperature and host plant richness were the main drivers of butterfly richness, with change in temperature best explaining the change in richness over time. We concluded that host plants were not yet hindering butterfly species and communities from shifting upwards. However, the mismatch between butterfly and host plant shifts might become a problem for this very close plant-herbivore relationship, especially toward higher elevations, if butterflies fail to adapt to new host plants. Further, our results support the value of conserving traditional extensive pasture use as a promoter of host plant and, hence, butterfly richness.


Asunto(s)
Mariposas Diurnas , Animales , Mariposas Diurnas/fisiología , Larva , Cambio Climático , Adaptación Fisiológica , Plantas , Biodiversidad , Ecosistema
4.
Glob Chang Biol ; 28(13): 4027-4040, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35429201

RESUMEN

The composition and richness of herbivore and plant assemblages change along climatic gradients, but knowledge about associated shifts in specialization is scarce and lacks controlling for the abundance and phylogeny of interaction partners. Thus, we aimed to test whether the specialization of phytophagous insects in insect-plant interaction networks decreases toward cold habitats as predicted by the 'altitude niche-breadth hypothesis' to forecast possible consequences of interaction rewiring under climate change. We used a non-invasive, standardized metabarcoding approach to reconstruct dietary relationships of Orthoptera species as a major insect herbivore taxon along a broad temperature gradient (~12°C) in Southern Germany. Based on Orthoptera surveys, feeding observations, collection of fecal pellets from >3,000 individuals of 54 species, and parallel vegetation surveys on 41 grassland sites, we quantified plant resource availability and its use by herbivores. Herbivore assemblages were richer in species and individuals at sites with high summer temperatures, while plant richness peaked at intermediate temperatures. Corresponding interaction networks were most specialized in warm habitats. Considering phylogenetic relationships of plant resources, however, the specialization pattern was not linear but peaked at intermediate temperatures, mediated by herbivores feeding on a narrow range of phylogenetically related resources. Our study provides empirical evidence of resource specialization of insect herbivores along a climatic gradient, demonstrating that resource phylogeny, availability, and temperature interactively shape the specialization of herbivore assemblages. Instead of low specialization levels only in cold, harsh habitats, our results suggest increased generalist feeding due to intraspecific changes and compositional differences at both ends of the microclimatic gradient. We conclude that this nonlinear change of phylogeny-based resource specialization questions predictions derived from the 'altitude-niche breadth hypothesis' and highlights the currently limited understanding of how plant-herbivore interactions will change under future climatic conditions.


Asunto(s)
Herbivoria , Plantas Comestibles , Animales , Humanos , Insectos , Filogenia , Temperatura
5.
Nat Commun ; 12(1): 3918, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34168127

RESUMEN

Land-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Microbiología del Suelo , Agricultura , Animales , Europa (Continente) , Cadena Alimentaria , Bosques , Pradera , Herbivoria , Insectos
6.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649216

RESUMEN

Agri-environmental schemes (AES) aim to restore biodiversity and biodiversity-mediated ecosystem services in landscapes impoverished by modern agriculture. However, a systematic, empirical evaluation of different AES types across multiple taxa and functional groups is missing. Within one orthogonal design, we studied sown flowering AES types with different temporal continuity, size, and landscape context and used calcareous grasslands as seminatural reference habitat. We measured species richness of 12 taxonomic groups (vascular plants, cicadas, orthopterans, bees, butterflies, moths, hoverflies, flower visiting beetles, parasitoid wasps, carabid beetles, staphylinid beetles, and birds) representing 5 trophic levels. A total of 54,955 specimens were identified using traditional taxonomic methods, and bulk arthropod samples were identified through DNA metabarcoding, resulting in a total of 1,077 and 2,110 taxa, respectively. Species richness of most taxonomic groups, as well as multidiversity and richness of pollinators, increased with temporal continuity of AES types. Some groups responded to size and landscape context, but multidiversity and richness of pollinators and natural enemies were not affected. AES flowering fields supported different species assemblages than calcareous grasslands, but assemblages became more similar to those in seminatural grasslands with increasing temporal continuity. Our results indicate that AES flowering fields and seminatural grasslands function synergistically. Flowering fields support biodiversity even when they are relatively small and in landscapes with few remaining seminatural habitats. We therefore recommend a network of smaller, temporally continuous AES flowering fields of different ages, combined with permanent seminatural grasslands, to maximize benefits for biodiversity conservation and ecosystem service delivery in agricultural landscapes.


Asunto(s)
Agricultura , Abejas , Biodiversidad , Aves , Escarabajos , Conservación de los Recursos Naturales , Animales , Abejas/clasificación , Abejas/fisiología , Aves/clasificación , Aves/fisiología , Escarabajos/clasificación , Escarabajos/fisiología , Polinización/fisiología
8.
J Fungi (Basel) ; 6(3)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961967

RESUMEN

Mycotoxins in agriculturally used plants can cause intoxication in animals and can lead to severe financial losses for farmers. The endophytic fungus Epichloë festucae var. lolii living symbiotically within the cool season grass species Lolium perenne can produce vertebrate and invertebrate toxic alkaloids. Hence, an exact quantitation of alkaloid concentrations is essential to determine intoxication risk for animals. Many studies use different methods to detect alkaloid concentrations, which complicates the comparability. In this study, we showed that alkaloid concentrations of individual plants exceeded toxicity thresholds on real world grasslands in Germany, but not on the population level. Alkaloid concentrations on five German grasslands with high alkaloid levels peaked in summer but were also below toxicity thresholds on population level. Furthermore, we showed that alkaloid concentrations follow the same seasonal trend, regardless of whether plant fresh or dry weight was used, in the field and in a common garden study. However, alkaloid concentrations were around three times higher when detected with dry weight. Finally, we showed that alkaloid concentrations can additionally be biased to different alkaloid detection methods. We highlight that toxicity risks should be analyzed using plant dry weight, but concentration trends of fresh weight are reliable.

9.
Microorganisms ; 8(4)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244510

RESUMEN

Fungal endophytes of the genus Epichloë live symbiotically in cool season grass species and can produce alkaloids toxic to insects and vertebrates, yet reports of intoxication of grazing animals have been rare in Europe in contrast to overseas. However, due to the beneficial resistance traits observed in Epichloë infected grasses, the inclusion of Epichloë in seed mixtures might become increasingly advantageous. Despite the toxicity of fungal alkaloids, European seed mixtures are rarely tested for Epichloë infection and their infection status is unknown for consumers. In this study, we tested 24 commercially available seed mixtures for their infection rates with Epichloë endophytes and measured the concentrations of the alkaloids ergovaline, lolitrem B, paxilline, and peramine. We detected Epichloë infections in six seed mixtures, and four contained vertebrate and insect toxic alkaloids typical for Epichloë festucae var. lolii infecting Lolium perenne. As Epichloë infected seed mixtures can harm livestock, when infected grasses become dominant in the seeded grasslands, we recommend seed producers to test and communicate Epichloë infection status or avoiding Epichloë infected seed mixtures.

10.
J Chem Ecol ; 46(4): 422-429, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32125581

RESUMEN

Systemic grass-endophytes of the genus Epichloë symbiotically infect the above-ground plant parts of many grass species, where they produce alkaloids in a grass- and endophyte-specific manner that are toxic or deterrent to herbivores. An increasing number of studies show cascading negative effects of endophyte-derived alkaloids that extend to higher trophic levels, harming beneficial insects, including those that control aphid populations. Lacewings are one of the major biological aphid controls, and are especially resistant to insecticides and pollutants, but their susceptibility to endophyte infection in the food chain has never been studied. Our study found variability in aphid population growth depending on the endophyte-grass chemotype, where aphid population growth was lowest on chemotypes known for producing high amounts of loline alkaloids. We also showed that larval and pupal development and mortality of the Common Green Lacewing (Chrysoperla carnea) was, in a non-choice experiment, not affected by endophyte infection in the food chain. This is a first indication that lacewings might be resistant to endophyte-derived alkaloids and could be robust biocontrol agents when applied together with endophyte-infected grass, possibly replacing chemical pesticides.


Asunto(s)
Áfidos/fisiología , Endófitos/química , Epichloe/química , Insectos/crecimiento & desarrollo , Lolium/microbiología , Simbiosis , Animales , Áfidos/química , Dieta , Cadena Alimentaria , Herbivoria , Larva/crecimiento & desarrollo , Lolium/química , Longevidad , Crecimiento Demográfico
11.
Arthropod Struct Dev ; 52: 100883, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31568972

RESUMEN

Many aphid species reproduce parthenogenetically throughout most of the year, with individuals having identical genomes. Nevertheless, aphid clones display a marked polyphenism with associated behavioural differences. Pea aphids (Acyrthosiphon pisum), when crowded, produce winged individuals, which have a larger dispersal range than wingless individuals. We examined here if brain structures linked to primary sensory processing and high-order motor control change in size as a function of wing polyphenism. Using micro-computing tomography (micro-CT) scans and immunocytochemical staining with anti-synapsin antibody, we reconstructed primary visual (optic lobes) and olfactory (antennal lobes) neuropils, together with the central body of winged and wingless parthenogenetic females of A. pisum for volume measurements. Absolute neuropil volumes were generally bigger in anti-synapsin labelled brains compared to micro-CT scans. This is potentially due to differences in rearing conditions of the used aphids. Independent of the method used, however, winged females consistently had larger antennal lobes and optic lobes than wingless females in spite of a larger overall body size of wingless compared to winged females. The volume of the central body, on the other hand was not significantly different between the two morphs. The larger primary sensory centres in winged aphids might thus provide the neuronal substrate for processing different environmental information due to the increased mobility during flight.


Asunto(s)
Áfidos/anatomía & histología , Áfidos/fisiología , Vuelo Animal , Animales , Encéfalo/anatomía & histología , Femenino , Tamaño de los Órganos
12.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31227553

RESUMEN

Symbiotic Epichloë species are fungal endophytes of cool-season grasses that can produce alkaloids with toxicity to vertebrates and/or invertebrates. Monitoring infections and presence of alkaloids in grasses infected with Epichloë species can provide an estimate of possible intoxication risks for livestock. We sampled 3,046 individuals of 13 different grass species in three regions on 150 study sites in Germany. We determined infection rates and used PCR to identify Epichloë species diversity based on the presence of different alkaloid biosynthesis genes, then confirmed the possible chemotypes with high-performance liquid chromatography (HPLC)/ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) measurements. Infections of Epichloë spp. were found in Festuca pratensis Huds. (81%), Festuca ovina L. aggregate (agg.) (73%), Lolium perenne L. (15%), Festuca rubra L. (15%) and Dactylis glomerata L. (8%). The other eight grass species did not appear to be infected. For the majority of Epichloë-infected L. perenne samples (98%), the alkaloids lolitrem B and peramine were present, but ergovaline was not detected, which was consistent with the genetic evaluation, as dmaW, the gene encoding the first step of the ergot alkaloid biosynthesis pathway, was absent. Epichloë uncinata in F. pratensis produced anti-insect loline compounds. The Epichloë spp. observed in the F. ovina agg. samples showed the greatest level of diversity, and different intermediates of the indole-diterpene pathway could be detected. Epichloë infection rates alone are insufficient to estimate intoxication risks for livestock, as other factors, like the ability of the endophyte to produce the alkaloids, also need to be assessed.IMPORTANCE Severe problems of livestock intoxication from Epichloë-infected forage grasses have been reported from New Zealand, Australia, and the United States, but much less frequently from Europe, and particularly not from Germany. Nevertheless, it is important to monitor infection rates and alkaloids of grasses with Epichloë fungi to estimate possible intoxication risks. Most studies focus on agricultural grass species like Lolium perenne and Festuca arundinacea, but other cool-season grass species can also be infected. We show that in Germany, infection rates and alkaloids differ between grass species and that some of the alkaloids can be toxic to livestock. Changes in grassland management due to changing climate, especially with a shift toward grasslands dominated with Epichloë-infected species such as Lolium perenne, may result in greater numbers of intoxicated livestock in the near future. We therefore suggest regular monitoring of grass species for infections and alkaloids and call for maintaining heterogenous grasslands for livestock.


Asunto(s)
Alcaloides/análisis , Endófitos/química , Epichloe/química , Poaceae/química , Poaceae/microbiología , Animales , Cromatografía Líquida de Alta Presión , Dactylis/química , Dactylis/microbiología , Endófitos/fisiología , Epichloe/fisiología , Festuca/química , Festuca/microbiología , Cromatografía de Gases y Espectrometría de Masas , Alemania , Ganado , Lolium/química , Lolium/microbiología , Especificidad de la Especie , Simbiosis , Espectrometría de Masas en Tándem
13.
Ecol Lett ; 22(7): 1083-1094, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30957401

RESUMEN

Managing agricultural landscapes to support biodiversity and ecosystem services is a key aim of a sustainable agriculture. However, how the spatial arrangement of crop fields and other habitats in landscapes impacts arthropods and their functions is poorly known. Synthesising data from 49 studies (1515 landscapes) across Europe, we examined effects of landscape composition (% habitats) and configuration (edge density) on arthropods in fields and their margins, pest control, pollination and yields. Configuration effects interacted with the proportions of crop and non-crop habitats, and species' dietary, dispersal and overwintering traits led to contrasting responses to landscape variables. Overall, however, in landscapes with high edge density, 70% of pollinator and 44% of natural enemy species reached highest abundances and pollination and pest control improved 1.7- and 1.4-fold respectively. Arable-dominated landscapes with high edge densities achieved high yields. This suggests that enhancing edge density in European agroecosystems can promote functional biodiversity and yield-enhancing ecosystem services.


Asunto(s)
Biodiversidad , Productos Agrícolas , Ecosistema , Agricultura , Animales , Europa (Continente) , Polinización
14.
Insect Sci ; 26(1): 164-170, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28726267

RESUMEN

Phenology shifts and range expansions cause organisms to experience novel day length - temperature correlations. Depending on the temporal niche, organisms may benefit or suffer from changes in day length, thus potentially affecting phenological adaptation. We assessed the impact of day length changes on larvae of Chrysoperla carnea (Stephens) and Episyrphus balteatus (De Geer), both of which prey on aphids. Larvae of E. balteatus are night-active, whereas those of C. carnea appear to be crepuscular. We subjected both species in climate chambers to day lengths of 16 : 8 L : D and, to circumvent diapause responses, 20 : 4 L : D. We recorded development times and predation rates of both species. E. balteatus grew 13% faster in the 16 : 8 L : D treatment and preyed on significantly more aphids. In contrast, C. carnea grew 13% faster in the 20 : 4 L : D treatment and higher predation rates in 20 : 4 L : D were marginally significant. Our results show that day length affects development and predation, but that the direction depends on species. Such differences in the use of day length may alter the efficiency of biocontrol agents in a changing climate.


Asunto(s)
Áfidos , Dípteros/crecimiento & desarrollo , Cadena Alimentaria , Fotoperiodo , Conducta Predatoria , Animales
15.
PeerJ ; 6: e5078, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967739

RESUMEN

BACKGROUND: Pitfall traps are commonly used to assess ground dwelling arthropod communities. The effects of different pitfall trap designs on the trapping outcome are poorly investigated however they might affect conclusions drawn from pitfall trap data greatly. METHODS: We tested four pitfall trap types which have been used in previous studies for their effectiveness: a simple type, a faster exchangeable type with an extended plastic rim plate and two types with guidance barriers (V- and X-shaped). About 20 traps were active for 10 weeks and emptied biweekly resulting in 100 trap samples. RESULTS: Pitfall traps with guidance barriers were up to five times more effective than simple pitfall traps and trap samples resulted in more similar assemblage approximations. Pitfall traps with extended plastic rim plates did not only perform poorly but also resulted in distinct carabid assemblages with less individuals of small species and a larger variation. DISCUSSION: Due to the obvious trait filtering and resulting altered assemblages, we suggest not to use pitfall traps with extended plastic rim plates. In comprehensive biodiversity inventories, a smaller number of pitfall traps with guidance barriers and a larger number of spatial replicates is of advantage, while due to comparability reasons, the use of simple pitfall traps will be recommended in most other cases.

16.
PeerJ ; 6: e4660, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780665

RESUMEN

Epichloë endophytes associated with cool-season grass species can protect their hosts from herbivory and can suppress mycorrhizal colonization of the hosts' roots. However, little is known about whether or not Epichloë endophyte infection can also change the foliar fungal assemblages of the host. We tested 52 grassland study sites along a land-use intensity gradient in three study regions over two seasons (spring vs. summer) to determine whether Epichloë infection of the host grass Lolium perenne changes the fungal community structure in leaves. Foliar fungal communities were assessed by Next Generation Sequencing of the ITS rRNA gene region. Fungal community structure was strongly affected by study region and season in our study, while land-use intensity and infection with Epichloë endophytes had no significant effects. We conclude that effects on non-systemic endophytes resulting from land use practices and Epichloë infection reported in other studies were masked by local and seasonal variability in this study's grassland sites.

17.
J Anim Ecol ; 87(1): 139-149, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28502082

RESUMEN

Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3 days and (iii) a mismatch of 6 days, with bees occurring earlier than flowers in the latter two cases. A mismatch of 6 days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3 days as under perfect synchronization. However, O. cornuta decreased the number of female offspring, whereas O. bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3 days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O. bicornis. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources.


Asunto(s)
Abejas/fisiología , Cambio Climático , Cadena Alimentaria , Aptitud Genética , Polinización , Animales , Abejas/genética , Flores/fisiología , Alemania , Calor , Especificidad de la Especie
18.
Sci Rep ; 7(1): 14906, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097765

RESUMEN

Timing seasonal events, like reproduction or diapause, is crucial for the survival of many species. Global change causes phenologies worldwide to shift, which requires a mechanistic explanation of seasonal time measurement. Day length (photoperiod) is a reliable indicator of winter arrival, but it remains unclear how exactly species measure day length. A reference for time of day could be provided by a circadian clock, by an hourglass clock, or, as some newer models suggest, by a damped circadian clock. However, damping of clock outputs has so far been rarely observed. To study putative clock outputs of Acyrthosiphon pisum aphids, we raised individual nymphs on coloured artificial diet, and measured rhythms in metabolic activity in light-dark illumination cycles of 16:08 hours (LD) and constant conditions (DD). In addition, we kept individuals in a novel monitoring setup and measured locomotor activity. We found that A. pisum is day-active in LD, potentially with a bimodal distribution. In constant darkness rhythmicity of locomotor behaviour persisted in some individuals, but patterns were mostly complex with several predominant periods. Metabolic activity, on the other hand, damped quickly. A damped circadian clock, potentially driven by multiple oscillator populations, is the most likely explanation of our results.


Asunto(s)
Áfidos/fisiología , Relojes Circadianos , Animales , Áfidos/metabolismo , Ritmo Circadiano , Oscuridad , Locomoción , Estaciones del Año
19.
Front Plant Sci ; 8: 1478, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900434

RESUMEN

Despite the evidence that increased frequency and magnitude of extreme climate events (ECE) considerably affect plant performance, there is still a lack of knowledge about how these events affect mountain plant biodiversity and mountain ecosystem functioning. Here, we assessed the short-term (one vegetation period) effects of simulated ECEs [extreme drought (DR), advanced and delayed snowmelt (AD and DE), respectively] on the performance of 42 plant species occurring in the Bavarian Alps (Germany) along an elevational gradient of 600-2000 m a.s.l. in terms of vegetative growth and reproduction performance. We demonstrate that plant vegetative and generative traits respond differently to the simulated ECEs, but the nature and magnitude treatment effects strongly depend on study site location along the elevational gradient, species' altitudinal origin and plant functional type (PFT) of the target species. For example, the negative effect of DR treatment on growth (e.g., lower growth rates and lower leaf nitrogen content) and reproduction (e.g., lower seed mass) was much stronger in upland sites, as compared to lowlands. Species' response to the treatments also differed according to their altitudinal origin. Specifically, upland species responded negatively to extreme DR (e.g., lower growth rates and lower leaf carbon concentrations, smaller seed set), whereas performance of lowland species remained unaffected (e.g., stable seed set and seed size) or even positively responded (e.g., higher growth rates) to that treatment. Furthermore, we were able to detect some consistent differences in responses to the ECEs among three PFTs (forbs, graminoids, and legumes). For instance, vegetative growth and sexual reproduction of highly adaptable opportunistic graminoids positively responded to nearly all ECEs, likely on the costs of other, more conservative, forbs and legumes. Our results suggest that ECEs can significantly modify the performance of specific plant groups and therefore lead to changes in plant community structure and composition under ongoing climate change. Our study therefore underlines the need for more experimental studies on the effects of extreme climate events to understand the potential consequences of climate change for the alpine ecosystem.

20.
Sci Rep ; 7(1): 8172, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811504

RESUMEN

Natural enemies have been shown to be effective agents for controlling insect pests in crops. However, it remains unclear how different natural enemy guilds contribute to the regulation of pests and how this might be modulated by landscape context. In a field exclusion experiment in oilseed rape (OSR), we found that parasitoids and ground-dwelling predators acted in a complementary way to suppress pollen beetles, suggesting that pest control by multiple enemies attacking a pest during different periods of its occurrence in the field improves biological control efficacy. The density of pollen beetle significantly decreased with an increased proportion of non-crop habitats in the landscape. Parasitism had a strong effect on pollen beetle numbers in landscapes with a low or intermediate proportion of non-crop habitats, but not in complex landscapes. Our results underline the importance of different natural enemy guilds to pest regulation in crops, and demonstrate how biological control can be strengthened by complementarity among natural enemies. The optimization of natural pest control by adoption of specific management practices at local and landscape scales, such as establishing non-crop areas, low-impact tillage, and temporal crop rotation, could significantly reduce dependence on pesticides and foster yield stability through ecological intensification in agriculture.


Asunto(s)
Control Biológico de Vectores , Conducta Predatoria , Agricultura , Animales , Escarabajos/parasitología , Escarabajos/fisiología , Productos Agrícolas , Ecosistema , Interacciones Huésped-Parásitos , Densidad de Población , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...